Java对象创建与回收

加载类

我们都知道类的加载过程有加载->验证->准备->解析->初始化几个步骤,才能正式使用,当我们用new指令创建对象时,虚拟机会判断该类是否已经完成加载,如果没有,先执行上述的加载步骤,如果已经完成加载,就开始创建对象。一旦一个类加载完成,待创建对象所需的内存大小就已经确定了,为对象分配空间,等同于把一块确定大小的内存从堆里划分出来。

分配内存

划分内存方法

指针碰撞(Bump the Pointer) (默认)

如果垃圾收集器采用标记整理算法,Java堆中的内存是规整的,所有用过的内存都在一边,空闲的内存放在另一边,中间放着一个指针作为分界点的指示器,那所分配内存就仅仅是把那个指针向空闲空间那边挪动一段与对象大小相等的距离。

空闲列表(Free List)

如果Java堆中的内存并不是规整的(标记清除算法),已使用的内存和空 闲的内存相互交错,那就没有办法简单地进行指针碰撞了,虚拟机就必须维护一个列表,记 上哪些内存块是可用的,在分配的时候从列表中找到一块足够大的空间划分给对象实例,并更新列表上的记录.

内存分配的并发问题

多线程同时创建对象时,会存在并发问题,同时使用相同的内存地址,那么jvm是怎么解决的呢?

  • CAS (compare and swap)
    虚拟机采用CAS配上失败重试的方式保证更新操作的原子性来对分配内存空间的动作进行同步处理。
  • 本地线程分配缓冲 (Thread Local Allocation Buffer,TLAB)
    把内存分配的动作按照线程划分在不同的空间之中进行,即每个线程在Java堆中预先分配一小块内存。通过­XX:+/­-UseTLAB参数来设定虚拟机是否使用TLAB(JVM会默认开启­XX:+UseTLAB),­XX:TLABSize 指定TLAB大小。

初始化

内存分配完成后,虚拟机需要将分配到的内存空间都初始化为零值(不包括对象头), 如果使用TLAB,这一工作过程也可以提前至TLAB分配时进行。这一步操作保证了对象的实例字段在Java代码中可以不赋初始值就直接使用,程序能访问 到这些字段的数据类型所对应的零值。

设置对象头

初始化零值之后,虚拟机要对对象进行必要的设置,例如这个对象是哪个类的实例、如何才能找到类的元数据信息、对象的哈希码、对象的GC分代年龄等信息。这些信息存放在对象的对象头Object Header之中。

在HotSpot虚拟机中,对象在内存中存储的布局可以分为3块区域:对象头(Header)、 实例数据(Instance Data) 和对齐填充(Padding)。 HotSpot虚拟机的对象头包括两部分信息,第一部分用于存储对象自身的运行时数据, 如哈 希码(HashCode)、GC分代年龄、锁状态标志、线程持有的锁、偏向线程ID、偏向时 间戳等。对象头的另外一部分是类型指针,即对象指向它的类元数据的指针,虚拟机通过这个指针来确定这个对象是哪个类的实例。

可以看到分代年龄只占4bit,所以年龄最大是15(2^4-1)

Klass Pointer

这个是指向元空间里类信息的指针

对齐填充的作用

如果对象的大小不是8的位数,就会使用对齐填充填到8的位数,主要是提交内存管理效率。

执行方法

执行<init>方法,即对象按照程序员的意愿进行初始化。对应到语言层面上讲,就是为属性赋值(注意,这与上面的赋 零值不同,这是由程序员赋的值),和执行构造方法。

对象的头信息以用占用空间可以使用jol­-core包查看:

1
2
3
4
5
<dependency>
<groupId>org.openjdk.jol</groupId>
<artifactId>jol-core</artifactId>
<version>0.9</version>
</dependency>
1
2
3
Object obj=new Object();
ClassLayout classLayout = ClassLayout.parseInstance(obj);
System.out.println(classLayout.toPrintable());

什么是java对象的指针压缩?

  1. jdk1.6 update14开始,在64bit操作系统中,JVM支持指针压缩,将指针地址压到32位。
  2. jvm配置参数:UseCompressedOops,compressed­­压缩、oop(ordinary object pointer)­­对象指针
  3. 启用指针压缩:­XX:+UseCompressedOops(默认开启),禁止指针压缩:­XX:­UseCompressedOops

在jvm中,32位地址最大支持4G内存(2的32次方),可以通过对对象指针的压缩编码、解码方式进行优化,使得jvm 只用32位地址就可以支持更大的内存配置(小于等于32G)

堆内存小于4G时,不需要启用指针压缩,jvm会直接去除高32位地址,即使用低虚拟地址空间

堆内存大于32G时,压缩指针会失效,会强制使用64位(即8字节)来对java对象寻址,这就会出现1的问题,所以堆内 存不要大于32G为好。

对象栈上分配

我们通过JVM内存分配可以知道JAVA中的对象都是在堆上进行分配,当对象没有被引用的时候,需要依靠GC进行回收内存,如果对象数量较多的时候,会给GC带来较大压力,也间接影响了应用的性能。为了减少临时对象在堆内分配的数量,JVM通过逃逸分析确定该对象不会被外部访问。如果不会逃逸可以将该对象在栈上分配内存,这样该对象所占用的内存空间就可以随栈帧出栈而销毁,就减轻了垃圾回收的压力。

对象逃逸分析:就是分析对象动态作用域,当一个对象在方法中被定义后,它可能被外部方法所引用,例如作为调用参 数传递到其他地方中:

1
2
3
4
5
6
7
8
9
public User test1(){
User user=new User();
user.age=1;
return user;
}
public void test2(){
User user=new User();
user.age=1;
}

很显然test1方法中的user对象被返回了,这个对象的作用域范围不确定,test2方法中的user对象我们可以确定当方法结束这个对象就可以认为是无效对象了,对于这样的对象我们其实可以将其分配在栈内存里,让其在方法结束时跟随栈内存一起被回收掉。 JVM对于这种情况可以通过开启逃逸分析参数(-XX:+DoEscapeAnalysis)来优化对象内存分配位置,使其通过标量替换优 先分配在栈上(栈上分配),JDK7之后默认开启逃逸分析,如果要关闭使用参数(-XX:-DoEscapeAnalysis)

标量替换:通过逃逸分析确定该对象不会被外部访问,并且对象可以被进一步分解时,JVM不会创建该对象,而是将该对象成员变量分解若干个被这个方法使用的成员变量所代替,这些代替的成员变量在栈帧或寄存器上分配空间,这样就 不会因为没有一大块连续空间导致对象内存不够分配。开启标量替换参数(-XX:+EliminateAllocations),JDK7之后默认 开启。

标量与聚合量:标量即不可被进一步分解的量,而JAVA的基本数据类型就是标量(如:int,long等基本数据类型以及 reference类型等),标量的对立就是可以被进一步分解的量,而这种量称之为聚合量。而在JAVA中对象就是可以被进一 步分解的聚合量。

栈上分配,依赖于逃逸分析标量替换

对象在Eden区分配

大多数情况下,对象在新生代中 Eden 区分配。当 Eden 区没有足够空间进行分配时,虚拟机将发起一次Minor GC。

  • Minor GC/Young GC:指发生新生代的的垃圾收集动作,Minor GC非常频繁,回收速度一般也比较快。
  • Major GC/Full GC:一般会回收老年代 ,年轻代,方法区的垃圾,Major GC的速度一般会比Minor GC的慢10倍以上。

大量的对象被分配在eden区,eden区满了后会触发minor gc,可能会有99%以上的对象成为垃圾被回收掉,剩余存活的对象会被挪到为空的那块survivor区,下一次eden区满了后又会触发minor gc,把eden区和survivor区垃圾对象回 收,把剩余存活的对象一次性挪动到另外一块为空的survivor区,因为新生代的对象都是朝生夕死的,存活时间很短,所 以JVM默认的8:1:1的比例是很合适的,让eden区尽量的大,survivor区够用即可, JVM默认有这个参数-XX:+UseAdaptiveSizePolicy(默认开启),会导致这个8:1:1比例自动变化,如果不想这个比例有变 化可以设置参数-XX:-UseAdaptiveSizePolicy

大对象直接进入老年代

大对象就是需要大量连续内存空间的对象(比如:字符串、数组)。JVM参数 -XX:PretenureSizeThreshold可以设置大对象的大小,如果对象超过设置大小会直接进入老年代,不会进入年轻代,这个参数只在 SerialParNew两个收集器下有效 。比如设置JVM参数:-XX:PretenureSizeThreshold=1000000 (单位是字节) -XX:+UseSerialGC,当创建大于100000的对象,就会直接进入老年代。

为什么要这样呢? 为了避免为大对象分配内存时的复制操作而降低效率。

长期存活的对象将进入老年代

既然虚拟机采用了分代收集的思想来管理内存,那么内存回收时就必须能识别哪些对象应放在新生代,哪些对象应放在 老年代中。为了做到这一点,虚拟机给每个对象一个对象年龄(Age)计数器。 如果对象在 Eden 出生并经过第一次 Minor GC 后仍然能够存活,并且能被 Survivor 容纳的话,将被移动到 Survivor 空间中,并将对象年龄设为1。对象在 Survivor 中每熬过一次 MinorGC,年龄就增加1岁,当它的年龄增加到一定程度 (默认为15岁,CMS收集器默认6岁,不同的垃圾收集器会略微有点不同),就会被晋升到老年代中。对象晋升到老年代 的年龄阈值,可以通过参数 -XX:MaxTenuringThreshold 来设置。

对象动态年龄判断

当前放对象的Survivor区域里(其中一块区域,放对象的那块s区),一批对象的总大小大于这块Survivor区域内存大小的 50%(-XX:TargetSurvivorRatio可以指定),那么此时大于等于这批对象年龄最大值的对象,就可以直接进入老年代了, 例如Survivor区域里现在有一批对象,年龄1+年龄2+年龄n的多个年龄对象总和超过了Survivor区域的50%,此时就会 把年龄n(含)以上的对象都放入老年代。这个规则其实是希望那些可能是长期存活的对象,尽早进入老年代。对象动态年 龄判断机制一般是在minor gc之后触发的。

老年代空间分配担保机制

年轻代每次minor gc之前JVM都会计算下老年代剩余可用空间。如果这个可用空间小于年轻代里现有的所有对象大小之和(包括垃圾对象) 就会看一个-XX:-HandlePromotionFailure(jdk1.8默认就设置了)的参数是否设置了,如果有这个参数,就会看看老年代的可用内存大小,是否大于之前每一次minor gc后进入老年代的对象的平均大小。 如果上一步结果是小于或者之前说的参数没有设置,那么就会触发一次Full gc,对老年代和年轻代一起回收一次垃圾, 如果回收完还是没有足够空间存放新的对象就会发生”OOM” 当然,如果minor gc之后剩余存活的需要挪动到老年代的对象大小还是大于老年代可用空间,那么也会触发full gc,full gc完之后如果还是没有空间放minor gc之后的存活对象,则也会发生“OOM”

对象的内存回收

判断一个对象是否需要被回收,有引用计数法可达性分析法

引用计数

给对象中添加一个引用计数器,每当有一个地方引用它,计数器就加1;当引用失效,计数器就减1;任何时候计数器为0 的对象就是不可能再被使用的。 这个方法实现简单,效率高,但是目前主流的虚拟机中并没有选择这个算法来管理内存,其最主要的原因是它很难解决 对象之间相互循环引用的问题。

可达性分析算法

将“GC Roots” 对象作为起点,从这些节点开始向下搜索引用的对象,找到的对象都标记为非垃圾对象,其余未标记的 对象都是垃圾对象.

GC Roots根节点:线程栈的本地变量、静态变量、本地方法栈的变量等等